If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-12=96
We move all terms to the left:
3y^2-12-(96)=0
We add all the numbers together, and all the variables
3y^2-108=0
a = 3; b = 0; c = -108;
Δ = b2-4ac
Δ = 02-4·3·(-108)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*3}=\frac{-36}{6} =-6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*3}=\frac{36}{6} =6 $
| x/8+5=3 | | J+9=4j | | (8-5)x=3x | | 6x+42=3x-4 | | -11d+7=40 | | 1/3(2n+6)=5n-12-n | | 30-3y=2 | | x=24/120 | | 2m+35=9m-7 | | 6/42=n/77 | | n/0.6=0.01/5 | | 6x+12°=64° | | 10-3y=2 | | −84x−5=x−(−28) | | n/0.4=0.04/4 | | (x+6)(x+9)=9(x+21) | | f(2)=2(2)-7 | | 24/x=120 | | 8x=6=10x-2 | | 2,1-x=2,1 | | 5(2+c)=4(1+c) | | 0.5x0.6=0.3 | | 4x-3/4=3/12 | | t=72-8*2 | | 4(x+5)=9x-34 | | 15=−5c | | 43x+-3x=-140 | | 4x³=8x | | -4w^2+7w+2=0 | | -0.5x^2+25X=0 | | 3(x-8)+14=36+x | | 5(11x-5(=85 |